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Introduction
Prostate cancer  (PCa) is the second most common 
cancer worldwide and believed to be the sixth highest 
cause of mortality among men [1]. Incidence elevates as 
the population of males above 50 years of age increases. 
However, this is attributed to the improvement 
of diagnostic modalities such as prostatic biopsy 
and prostate‑specific antigen  (PSA) and increased 
screening rather than a real increase in incidence [2].

It has been reported that the incidences of PCa in 
the Middle East, including Egypt, are lower than 
the western world. It was noted in the last decade by 
urologists, however, that there has been an increase in 
diagnosed cases of PCa. This might indicate an increase 
in awareness and an improvement of diagnostic 
methods or increased incidence  [3]. In Egypt in the 
year 2008, ~1661 men were diagnosed with PCa, with 
a rate of 6.6 diagnoses per 100 000, and 1283 men were 
expected to die from this disease at a rate of 5.1 deaths 
per 100 000 men [2].

The primary risk factors are age, family history, and 
obesity. It is uncommon for PCa to occur in a patient 

before 50  years of age. Nonetheless, 30% of men 
between 55 and 64 years of age are reported to have 
PCa [4].

A number of associations have been shown between 
some specific gene polymorphisms and the risk of PCa 
development, such as prostate cancer gene 3  (PCa3), 
alpha–methyl–acyl CoA racemase  (AMACR), and 
TMPRSS2:ERG gene fusion [5].

Lower blood levels of vitamin D are also thought to 
increase the risk of PCa, as do high levels of dietary fat, 
smoking, alcohol consumption, and the contraction of 
sexually transmitted diseases [6].

More than 95% of primary PCa are adenocarcinomas 
and are often found to be multifocal and heterogeneous 
in patterns of differentiation  [7]. PCa rarely causes 
symptoms at an early stage. The presence of symptoms 
suggests locally advanced or metastatic disease [8].
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Purpose:	The	goal	of	the	study	was	to	detect	the	existence	of	an	abnormal	proteomic	pattern	
in	prostate	cancerpatients	by	comparing	them	to	control	subjects	from	a	matching	age	group.	
Method:	The	study	was	conducted	on50	newly	diagnosed	prostate	cancer	(PCa)	patients	and	
50	normal	individuals	who	were	proven	clinically	and	bylaboratory	investigations	to	be	healthy.	
Plasma	samples	were	processed	using	MB‑WCX	magnetic	beads	andsamples	were	tested	
using	a	mass	spectrometer.	Mass	spectra	was	acquired	using	Bruker’s	FLEX‑analysisprogram	
and	later	the	peaks	were	analysed	using	the	ClinProTools	analysis.	Three	statistical	models	
(Geneticalgorithm	GA,	Supervised	Neural	Network	SNN,	Quickclassifier	QC)	were	generated	
to	detect	the	peaks.	Results:	The	results	showed	26	peaks	were	found	to	be	significantly	
expressed	between	the	cases	and	thecontrols	with	PWKW	<0.05.	Out	of	 these,	six	peaks	
were	 over	 expressed	 in	 cases,	while	 20	 peaks	were	 under‑expressed.	 The	GA	model	
generated	the	best	peak	combination,	showing	five	peaks	with	the	m/z	ratios	2485.97,1061.24,	
3295.1,	4612.54	and	2817.28.	This	model	achieved	a	sensitivity	of	87.5%	and	a	specificity	of	
92.9%during	external	validation.	Conclusion:	It	can	be	concluded	that	proteomic	profiling	can	
be	an	effective	method	for	the	discovery	of	newblood‑based	tumour	markers	for	PCa	patients.	
Moreover,	MALDI‑TOF	proteomic	profiling	represents	a	newfrontier	for	screening	and	early	
diagnosis	of	prostate	cancer	in	Egypt.	The	analytical	performance	of	multiplexedtumour	profiles	
exceeds	that	of	the	single	traditional	tumour	markers.

Keywords:
biomarkers,	MALDI‑TOF,	mass	spectrometry,	prostate	cancer,	proteomics



Plasma proteome and MS in prostatic cancer	Sadaka	et al. 85

Screening helps in PCa detection in patients without 
any evident symptoms and has resulted in a decrease in 
PCa mortality and incidence increase. The current Food 
and Drug Administration guidelines for PCa diagnosis 
depend on PSA detection in blood together with digital 
rectal examination for men over 50 years of age. The 
recommended age at which to begin screening for men 
at average risk who have a minimum life expectancy of 
10 years is 50 years of age. In African–American men 
and men who have one first‑degree relative diagnosed 
with PCa, the recommended age at which to begin 
screening is 40–45 years of age. Men who have several 
first‑degree relatives diagnosed with PCa at an early 
age, on the other hand, are best screened from the age 
of 40 [9].

It is important to note that PSA is prostate specific but 
not cancer specific. The presence of prostate diseases 
such as PCa, benign prostatic hyperplasia (BPH), and 
prostatitis is the most important factor affecting serum 
PSA levels  [10]. However, not all men with prostate 
diseases have increased PSA levels, and PSA elevations 
are not cancer specific [11].

One of the occasional problems with relying on PSA 
as a diagnostic indicator is its low sensitivity. For 
example, in cases where PSA levels are between 4.0 and 
10.0 ng/ml, the positive predictive value is ~25%, which 
is decreased compared with patients with PSA level 
greater than 10 ng/ml [12]. New modalities have been 
developed using PSA as a consequence, including free 
PSA, PSA velocity, and PSA volume [13]. Nonetheless, 
prostate biopsy remains the only definitive diagnostic 
modality and is held to be the gold standard in PCa 
diagnosis [14].

Given the low sensitivity and specificity of the currently 
used tumor marker PSA, however, there is a pressing 
need for the development of novel tumor markers 
that would be helpful in improving cancer diagnosis, 
prognosis, and treatment [15].

The term ‘proteome’ was first formulated in 1994 by 
Mark Wilkins to describe the complete set of proteins 
that ultimately results from genome transcription in a 
given cell, tissue, or organism [16]. Proteomics is the 
study of proteome, which is the protein complement of 
the genome. A cell will have only one genome but can 
have many proteomes, depending on which genes are 
expressed and the level of that expression at a particular 
time [17].

Proteomics is used nowadays to diagnose diseases 
using specific protein‑biomarker discovery. Several 
proteomic methods help test for proteins produced 
during a particular disease, which aids in earlier 

disease diagnosis. Techniques include Western blot, 
immune‑histochemical staining, enzyme‑linked 
immunosorbent assay, or mass spectrometry [18].

The diagnostic capability of matrix‑assisted 
laser‑desorption ionization time of flight  (MALDI/
TOF) is exemplified by its use in assisting in the 
diagnosis of pancreatic cancer, which is one of the most 
difficult cancers to diagnose and with high mortality 
rates [19].

Protein‑separation techniques are based on different 
physical properties of a protein. In the last decade, 
multiple studies have been carried out using magnetic 
beads as a method for offline serum peptide or protein 
capture in a procedure referred to as solid‑phase 
extraction [4]. Magnetic beads are specifically designed 
to manually or automatically fractionate proteins or 
peptides from complex biological samples in an efficient 
manner. The most applied beads in studies are weak 
cation‑exchange beads  (WCX), reverse‑phase C18 
beads  (RPC18), and C8 beads. WCX beads separate 
proteins based on charge, whereas RPC18 beads 
separate proteins and peptides via strong hydrophobic 
interaction [20].

Mass spectrometer used in this study is the MALDI–
TOF. The ions that are produced are then transferred 
through a vacuum tube to the mass analyzer where 
they are separated according to their mass‑to‑charge 
ratio (m/z). Each ion usually has a single charge (z = 1). 
Thus, the m/z ratio is equal to the mass, which means 
that the mass is the variable that determines the time 
of flight and that impacts the separation. All mass 
analyzers measure physical entity as the m/z value of the 
ions. The intensity at different m/z values is the output 
recorded at the detector. The result is visualized as a 
m/z versus intensity plot called the mass spectrum [21].

The MALDI technique is an effective means of 
ionizing peptides and proteins. Moreover, it has been 
reported by some studies that the MALDI–TOF 
profile is better than that of the surface‑enhanced laser 
ionization SELDI‑TOF in terms of a larger number of 
mass‑to‑charge peaks.

Patients and methods
The study was conducted on 50 newly diagnosed 
PCa patients who were admitted to Alexandria Main 
University Hospital at the Urology Department 
between November 2015 and April 2016. The controls 
were 50 normal males of the same‑age group who 
were proven clinically and by laboratory testing to be 
healthy. Freshly diagnosed PCa patients were chosen, 
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so patients who already underwent treatment by way 
of total surgical resection, chemotherapy, or radiation, 
were excluded from the study. Informed consent was 
taken from each participant. Each group of patients 
and controls was split at random into a training set 
of 26 patients and a validation set of 24 patients. The 
study was approved by the Research Ethics Committee 
of Alexandria University Hospital.

All participants in the study were subjected to 
history taking and routine laboratory investigations, 
which included alanine aminotransferase, aspartate 
aminotransferase, urea, creatinine, fasting blood sugar 
and complete blood‑count tests, and PSA  [22]. All 
PCa patients were confirmed by histopathological 
examination of prostatic tissue biopsy. Blood samples 
of around 5 ml were drawn from each candidate on a 
K2 EDTA tube and then transferred in an ice bag to 
the laboratory. Each sample was centrifuged in a cold 
centrifuge at 4°C for 15 min at 1800 g. The plasma was 
then separated and pipetted into five DNA low‑bind 
Eppendorf tubes, which were subsequently numbered 
and stored in a box at −80°C.

Before choosing which type of beads to use, a pilot 
study composed of plasma samples of 10 PCa patients 
and 10 controls was performed using two types of 
magnetic beads – MB‑WCX and MB‑C8 beads – in 
which WCX showed better results in comparison with 
C8 with respect to peak acquisition and abundance, 
it also yielded better validation results, higher overall 
recognition capability, and cross‑validation using 
WCX‑MBs compared with C8‑MBs as shown in 
Table 1.

Plasma samples  (5 µl) were processed using 
MB‑WCX kits from BRUKER Daltonics, and steps 
for protein purification were followed according to the 
manufacturer’s manual. In all, 1 µl of the resulting elute 
was spotted on a polished steel‑target plate, then 1 µl 
of matrix consisting of α‑cyano‑4‑hydroxycinnamic 
acid  (HCCA 3 mg/ml) in 50% acetonitrile 2% TFA 
was added to the dried‑sample elute [23].

To evaluate reproducibility, each plasma sample was 
spotted at four positions. The air‑dried targets were 
readied to be analyzed by the ultrafleXtreme mass 
spectrometer using the flexControl analysis program. 

The program settings were adjusted so that the 
detection limit was set to 800–20 000 Da, and spectral 
acquisition was performed in the positive linear mode. 
Only peaks with a signal/noise ratio above three were 
chosen from the generated spectra and then mass 
spectrometry was operated in information‑dependant 
analysis mode.

Most importantly, calibration was done using the 
ClinProTool Calibrant Standards (CPA) before testing 
the samples.

For data processing, the peaks acquired from the 
flexControl analysis program were analyzed using 
the ClinProTools V 3.0 program, which was able 
to perform spectra pretreatment, peak picking, and 
peak‑calculation operations, and was used to recognize 
peptide patterns.

Comparisons between PCa patients and healthy 
controls were performed using the Wilcoxon test; 
statistical significance was assumed when the 
P  value was less than 0.05. All spectra were loaded 
for peak statistic calculation, model generation, 
and classification. Three different statistical models 
were used to determine the most optimal peaks, 
being the genetic algorithm  (GA), supervised neural 
network (SNN), and quick classifier (QC) models.

Results
We analyzed the serum peptidome fingerprints of all 
50 patients with PCa as well as the 50 healthy controls. 
Further, we evaluated changes at the peptidome level in 
the plasma samples of 50 PCa patients compared with 
50 healthy controls in the training set. By analyzing 
the spectra (screened from two groups in the training 
set) using ClinProTools software V3.0, we were able to 
identify proteomic patterns that distinguished between 
PCa patients and the healthy controls.

GA settings have been set to use the first 100 
peaks  (according to PWKW) for model generation, 
69 peaks have been found to be true peaks as shown 
in Table  2. After checking the peak average area/
intensity for each class in Table 3, 26 peaks were found 
to be significantly expressed between the patients and 

Table 1 Results of pilot study between WCX-MB and C8-MB
Name	
algorithm

Validation Name Algorithm Validation
XVal X1×2 Recognition	capability XVal X1×2 Recognition	capability

WCX‑MB	GA 95% 100%	90% 100% C8‑MB GA 80% 70%	90% 100%
SNN 85% 90%	80% 100% SNN 80% 80%	80% 95%
QC 85% 80%	90% 100% QC 80% 90%	70% 90%

GA,	genetic	algorithm;	QC,	quick	classifier;	SNN,	supervised	neural	network;	WCX,	weak	cation‑exchange	bead;	Xval,	overall	cross‑validation;	
X1,	cross‑validation	1;	X2,	cross‑validation	2.
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the controls with PWKW less than 0.05 as shown 
in Table 3. Out of these, six peaks were upexpressed 
in patients, while 20 peaks were downexpressed in 
patients in relation to controls. The PWKW illustrates 
the results from the univariate point of view, these 
peaks can discriminate between PCa patients and 
healthy controls. However, the GA model has a 
multivariate‑detection capability, where the perfect 
number of peaks that constitutes a ClinProt Model 
was set in GA to 5. The model chooses the best 
combination of five peaks that discriminates between 
the two classes.

Using GA to build the differentiating model, five 
peaks were found, which represented the proteomic 
profile that differentiated between both groups. 
These five peaks had the m/z ratios 2485.97, 
1061.24, 3295.1, 4612.54, and 2817.28, whereby four 
were underexpressed in patients, while one  (peak 
24  =  3295.1) was overexpressed. In addition to its 
multivariate discriminatory power as a profile, three 
peaks were found through univariate analysis to 
be statistically significant and two were found to be 
insignificant between both groups. Their P values were 
as follows: peak 11 (m/z 2485.97) less than 0.000001, 
P value of peak 3 (m/z 1061.24)=0.05, and P value of 

Table 2 The peak statistics table of the peaks that have been 
used to differentiate prostate cancer patients from controls

ClinProTools	version 3.0	build	22
Number	of	peaks 69

Sort	mode P	WKW
S Index Mass DAve PTTA PWKW PAD
X 11 2485.97 30.9 <0.000001 <0.000001 0.0000344
X 6 1553.97 2.61 0.00173 0.000219 0.976
X 12 2660.79 6.21 0.0049 0.00104 <0.000001
X 27 4419.49 3.64 0.0471 0.00187 <0.000001
X 28 4435.4 2.95 0.0363 0.00344 <0.000001
X 8 2288.31 2.91 0.00306 0.00896 0.159
X 53 9135.46 0.21 0.0049 0.0101 0.00112
X 48 7566.2 1.71 0.0162 0.0108 <0.000001
X 29 4457.48 1.47 0.0249 0.0133 <0.000001
X 17 2878.94 20.31 0.0125 0.0149 0.296
X 31 4575.05 17.73 0.00632 0.0149 0.00405
X 23 3279.43 4.81 0.0049 0.016 0.00000116
X 54 9178.04 0.21 0.00415 0.016 0.0000401
X 59 9948.62 0.11 0.00632 0.016 0.255
X 64 11099.79 0.18 0.0597 0.0202 0.00000182
X 69 16613.29 0.25 0.0681 0.0213 <0.000001
X 24 3295.1 1.32 0.0162 0.0253 0.000312
X 15 2831.59 5.06 0.0126 0.027 0.0294
X 68 15127.93 0.41 0.0205 0.027 <0.000001
X 65 11730.75 0.14 0.0993 0.027 <0.000001
X 63 11080.01 0.21 0.056 0.029 <0.000001
X 47 6960.37 0.19 0.0993 0.029 <0.000001
X 25 4093.3 0.58 0.0222 0.0427 0.0287
X 52 8565.91 1.26 0.0597 0.0459 <0.000001
X 51 8528.63 0.25 0.0294 0.0459 <0.000001
X 9 2357.77 7.25 0.0597 0.0489 0.0443
X 3 1061.24 3.44 0.0232 0.0521 0.00786
X 20 2939.1 3.37 0.0316 0.0584 0.0232
X 1 925.11 5.96 0.0249 0.0592 0.00000164
X 30 4535.19 0.66 0.026 0.0621 0.00137
X 66 13293.81 0.22 0.111 0.0621 <0.000001
X 67 13315.56 0.2 0.154 0.0621 <0.000001
X 49 7648.68 0.25 0.0162 0.0694 <0.000001
X 32 4590.4 4.21 0.0363 0.0706 0.00634
X 44 6632.5 1.1 0.056 0.0719 <0.000001
X 26 4407.3 0.89 0.0968 0.0732 <0.000001
X 39 5669.39 0.33 0.0595 0.0817 0.636
S Index Mass DAve PTTA PWKW PAD
X 38 5002.59 1.02 0.0268 0.095 <0.000001	
X 43 6476.72 0.24 0.0405 0.122 0.0165
X 60 10106.33 0.08 0.056 0.122 <0.000001	
X 14 2817.28 2.41 0.0993 0.129 0.201
X 58 9423.01 0.13 0.0595 0.137 <0.000001	
X 56 9324.58 0.07 0.295 0.183 0.0163
X 21 3241.69 9.89 0.127 0.215 0.000703
X 18 2901.1 9.12 0.124 0.299 0.0563
X 7 1981.62 5.31 0.0425 0.323 <0.000001	
X 2 947.58 4.64 0.154 0.337 0.0048
X 33 4612.54 2.74 0.243 0.351 <0.000001	
X 41 5904.41 0.2 0.127 0.378 0.000946
X 42 6433.5 0.24 0.279 0.409 <0.000001	
X 46 6664.88 0.02 0.969 0.409 0.00182
X 45 6648.41 0.13 0.56 0.425 0.00185
X 61 10445.28 0.15 0.0993 0.429 <0.000001	

Table 2 Contd...
ClinProTools	version 3.0	build	22
Number	of	peaks 69

Sort	mode P	WKW
S Index Mass DAve PTTA PWKW PAD
X 40 5866.51 0.03 0.969 0.497 <0.000001	
X 13 2802.26 1.26 0.219 0.523 0.00642
X 62 10836.34 0.04 0.623 0.523 <0.000001	
X 36 4964.76 0.03 0.988 0.523 <0.000001	
X 37 4977.95 0.33 0.522 0.582 <0.000001	
X 16 2863.3 7.57 0.771 0.644 0.277
X 55 9288.43 0.23 0.467 0.663 0.0000506
X 19 2916.91 0.45 0.822 0.712 0.121
X 10 2423.28 1.67 0.462 0.808 0.00000302
X 4 1098.85 0.39 0.969 0.811 <0.000001	
X 5 1136.3 1.04 0.706 0.892 0.000007
X 35 4647.93 0.14 0.706 0.894 0.041
X 50 7766.16 0.22 0.378 0.927 <0.000001	
X 34 4628.31 0.47 0.513 0.929 <0.000001	
X 57 9362.56 0 0.988 0.931 0.36
X 22 3257.17 0.08 0.988 0.962 0.0414

S,	inclusion/exclusion	state	of	the	peak;	X	means	peak	is	included	
for	model	generation	while	‑	means	a	peak	is	not	included	for	model	
generation.	 Here,	 all	 peaks	 have	 been	 used.	 Index:	 peak	 index.	
Mass:	m/z ratio.	 Dave,	 difference	 between	 the	 maximal	 and	 the	
minimal	average	peak	area/intensity	of	all	 classes.	PTTA	P	 value	
of	 t	 test	 (two	 classes)	 or	 analysis	 of	 variance	 test	 (>2	 classes),	
range	0‑1;	0:	good,	1:	bad.	Preferable	 for	normal	distributed	data.	
PWKW	 P	 value	 of	 Wilcoxon	 test	 (two	 classes)	 or	 Kruskal‑Wallis	
test	 (>2	 classes),	 range	 0‑1;	 0:	 good,	 1:	 bad.	 Preferable	 for	 not	
normal	 distributed	 data.	 PAD	 P	 value	 of	 Anderson‑Darling	 test	
gives	information	about	normal	distribution;	range	0‑1;	0:	not	normal	
distributed,	1:	normal	distributed.

Contd...
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peak 24 (m/z 3295.1)=0.0253, contrary to the P value 
of peak 33 (m/z 4612.54)=0.351 and P value of peak 
14 (m/z 2817.28)=0.129.

The GA model demonstrated a higher 
recognition capability  (100%) and higher 
cross‑validation  (Xval  =  91.5%) than both the 
SNN model  (RC  =  100%, XVal  =  84%) and QC 
model  (RC  =  98.2%, XVal  =  86.4%). Moreover, the 
external validation of the GA model was higher 
than the other two models, showing sensitivity and 
specificity of 87.5 and 92.9%, respectively, as opposed 
to 100 and 64.3% in the SNN model and 87.5 and 
92.9% in the QC model.

The results of our study were plotted as whole spectral 
view (Fig. 1) showing the peaks from the two classes, 
also peak expressions (Fig. 2,3) showing the difference 
in expression of peaks 11 and 24 between patients and 
healthy participants.

Another plot was the box and whiskers. The top‑end and 
bottom‑end marks of the plot (whiskers) indicate the 
maximum and minimum peak intensity within a given 
class. The box indicates the 25% quartile (bottom) and 
the 75% quartile (top) and the horizontal intersection 
denotes the median. About 50% of the values fall into 
this interquartile range and the whiskers give you an 
impression of how much the remaining 50% of the 
values spread. The plot allows assessment of the quality 
of the peaks in a model. A  peak where the box and 
whiskers of the individual classes are well separated 
with only minimal overlap of the whiskers is better 
than the overlapping ones. As shown in Fig. 4, scaling 
for the box‑and‑whiskers command is unique and 
independent of the peak‑intensity scale.

The 2D peak statistics (Fig. 5) that uses two peaks to 
separate between the two studied classes uses the first 
two peaks (default) or manually choosing two peaks to 
be used. In this study, we used the first two peaks and 
the five peaks of the model against each other to see 
which two peaks can best separate PCa patients from 

controls as shown in Fig. 5, where peaks 6 and 11 were 
used.

The 2D peak statistics (Fig. 5) that uses two peaks to 
separate between the two studied classes uses the first 
two peaks (default) or manually choosing two peaks to 
be used. In this study, we used the first two peaks and 
the five peaks of the model against each other to see 
which two peaks can best separate PCa patients from 
controls as shown in Fig. 5, where peaks 6 and 11 were 
used.

Area under the curve (AUC) of the receiver‑operating 
characteristic curve is a combined measure of sensitivity 
and specificity, and it represents an important tool for 
the analysis of the performance of diagnostic tests [24]. 
For the peaks generated in our profile, we achieved 
an AUC = 0.725 of the peak with m/z 3295.1 Da as 
shown in Fig. 6, an AUC = 0.690994 of the peak with 
m/z 1061.24 Da, and an AUC = 1.0 of peak 11 with 
m/z 2485.97 Da.

Part of the present study attempted to detect the 
abnormality in the plasma of patients in the gray 
zone  (PSA  =  4–10 ng/ml)  –  the stage in which all 
patients, whether they are ultimately found to have 
cancer, are more prone to undergo prostatic biopsy for 
diagnosis – by testing 10 gray‑zone patients against 25 
controls. GA was used to create a model or profile to 
detect significant resultant peaks from the analysis. The 
following peaks with m/z ratios were identified: peak 
11  =  2485.88, peak 3  =  1061.19, peak 6  =  1553.91, 
peak 22 = 3295.1, and peak 19 = 3241.58. The whole 
multivariate model could distinguish PCa patients 
from gray‑zone patients with a recognition capability 
of 100% and overall cross‑validation of 99.38%. Only 
peaks 11 and 3 were significant in the univariate analysis.

Discussion
Mass spectrometry has increasingly been used as 
an approach to select new marker candidates for 

The	whole	spectral	view	in	ClinProTools.	The	figure	represents	class	
I	(patients)	in	red	against	class	II	(control)	in	gray.

Figure 1

Peak	 11	 expression	 between	 patients	 and	 controls.	 The	 red	 line	
demarcates	 the	 peak	 as	 an	 integration	 region	with	 start	mass	 of	
2478.63	and	end	mass	of	2496.

Figure 2
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early disease diagnosis, the monitoring of disease 
progression, and to assess the therapeutic effects of 
drugs. Technological breakthroughs allowing profiling 
of the entire proteome are promising in the detection 
of new biomarkers. MALDI–TOF is an advanced 
mass spectrometry technique that allows for protein 
identification through its molecular characteristics, 
including protein sequence, structure, heterogeneity, 
cleavage, and post‑translational modifications [25].

In the present study, WCX magnetic beads, 
UltrafleXtreme MALDI–TOF, and ClinProTools 
V 3.0 software were used to study the differential 
expression of peptides and proteins in the plasma of 
healthy‑controls and PCa patients.

The choice of using serum sample versus plasma 
sample was a debatable issue in our proteomic analysis. 
The specimen committee of the Human Proteome 

Organisation  (HUPO) and Plasma Proteome 
Project (PPP) prefers plasma to serum for the analysis 
of proteins under 20 kDa. The reason behind this is that 
plasma contains less degradation‑produced peptides 
that are produced by the action of proteases during the 
coagulation process. However, the standardization of 
sample handling while processing is as important as 
the choice of type of the sample [26].

The results illustrated 26 peaks that showed significant 
difference between controls and patients. In total, 20 
of those peaks were underexpressed, while six were 
overexpressed in the patients.

Petricoin et al. [27]. performed their study on benign and 
malignant PCa patients, and it showed the serum pattern 
that consisted of the combined relative amplitudes 
at seven m/z values that were 2092, 2367, 2582, 3080, 
4819, 5439, and 18 220. With these results, 36 of 38 PCa 

Table 3 Peak statistics table showing the 26 significant peaks
ClinProTools	version 3.0	build	22
Number	of	peaks 26

Sort	mode P	WKW
S Index Mass DAve PTTA PWKW PAD Ave1 Ave2 StdDev1 StdDev2 CV1 CV2
X 11 2485.97 30.9 <0.000001	 <0.000001	 0.0000344 7.36 38.27 3.63 15.7 49.26 41.02
X 6 1553.97 2.61 0.00173 0.000219 0.976 5.7 8.3 2.22 1.83 38.95 22.04
X 12 2660.79 6.21 0.0049 0.00104 <0.000001 10.55 4.34 6.9 3.4 65.38 78.26
X 27 4419.49 3.64 0.0471 0.00187 <0.000001	 5.87 2.23 6.89 0.75 117.26 33.51
X 28 4435.4 2.95 0.0363 0.00344 <0.000001	 4.59 1.63 5.21 0.72 113.63 43.98
X 8 2288.31 2.91 0.00306 0.00896 0.159 4.6 7.51 1.95 3 42.48 39.94
X 53 9135.46 0.21 0.0049 0.0101 0.00112 0.34 0.55 0.13 0.25 37.92 45.27
X 48 7566.2 1.71 0.0162 0.0108 <0.000001	 0.38 2.1 0.14 2.76 36.77 131.73
X 29 4457.48 1.47 0.0249 0.0133 <0.000001	 2.7 1.22 2.35 0.43 86.99 35.46
X 17 2878.94 20.31 0.0125 0.0149 0.296 38.9 59.21 20.4 23.54 52.43 39.76
X 31 4575.05 17.73 0.00632 0.0149 0.00405 16.68 34.41 11.25 22.58 67.46 65.64
X 23 3279.43 4.81 0.0049 0.016 0.00000116 9.27 4.46 5.53 2.07 59.62 46.45
X 54 9178.04 0.21 0.00415 0.016 0.0000401 0.37 0.58 0.11 0.25 29.72 43.23
X 59 9948.62 0.11 0.00632 0.016 0.255 0.29 0.4 0.11 0.1 40.05 26.28
X 64 11099.79 0.18 0.0597 0.0202 0.00000182 0.29 0.47 0.24 0.34 80.76 71.58
X 69 16613.29 0.25 0.0681 0.0213 <0.000001	 0.15 0.4 0.18 0.57 121.06 142.99
X 24 3295.1 1.32 0.0162 0.0253 0.000312 4.32 3.01 1.71 1.17 39.6 38.98
X 15 2831.59 5.06 0.0126 0.027 0.0294 7.74 12.8 4.02 6.84 52 53.47
X 68 15127.93 0.41 0.0205 0.027 <0.000001	 0.06 0.48 0.03 0.71 49.9 147.39
X 65 11730.75 0.14 0.0993 0.027 <0.000001	 0.29 0.43 0.26 0.26 88.51 61.06
X 63 11080.01 0.21 0.056 0.029 <0.000001	 0.29 0.5 0.25 0.38 85.17 76.87
X 47 6960.37 0.19 0.0993 0.029 <0.000001 0.79 0.98 0.28 0.41 35.4 41.52
X 25 4093.3 0.58 0.0222 0.0427 0.0287 1.9 2.47 0.55 0.85 29.19 34.24
X 52 8565.91 1.26 0.0597 0.0459 <0.000001	 0.52 1.78 0.27 2.92 52.98 164.26
X 51 8528.63 0.25 0.0294 0.0459 <0.000001	 0.41 0.66 0.16 0.45 38.65 67.93
X 9 2357.77 7.25 0.0597 0.0489 0.0443 16.55 23.8 11.31 11.9 68.33 49.99
X 3 1061.24 3.44 0.0232 0.0521 0.00786 8.21 11.65 2.97 5.33 36.22 45.77

S:	inclusion/exclusion	state	of	the	peak;	X	means	peak	is	included	for	model	generation	while	‑	means	a	peak	is	not	included	for	model	
generation.	Here,	all	peaks	have	been	used.	Index:	peak	index.	Mass:	m/z	ratio.	Dave,	difference	between	the	maximal	and	the	minimal	
average	peak	area/intensity	of	all	classes.	PTTA	P	value	of	t	test	(two	classes)	or	analysis	of	variance	test	(>2	classes),	range	0‑1;	0:	good,	
1:	bad.	Preferable	for	normal	distributed	data.	PWKW	P	value	of	Wilcoxon	test	(two	classes)	or	Kruskal‑Wallis	test	(>2	classes),	range	0‑1;	
0:	good,	1:	bad.	Preferable	for	not	normal	distributed	data.	PAD	P	value	of	Anderson‑Darling	test	gives	information	about	normal	distribution;	
range	0‑1;	0:	not	normal	distributed,	1:	normal	distributed.	AveN:	peak	average	area/intensity	for	class	N.	Peak	intensity	was	chosen	as	the	
sort	mode	in	the	average	peak	list	calculation	settings.	So	Ave1	is	the	average	intensity	for	class	I	(cases)	and	Ave2	is	the	average	intensity	
for	class	II	(control).	stdDevN,	SD	of	the	peak	average	intensity	for	class	N.	CVN,	coefficient	of	variation	in	%	of	class	N.
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patients’ proteomic pattern were correctly predicted (95%, 
95% confidence interval  =  82–99%), while 177 of 
228 patients were accurately classified as holding benign 
conditions (78%, 95% confidence interval = 72–83%). For 
men with marginally elevated PSA levels (4–10 ng/ml, 
n = 137), the specificity was 71%.

It is the difference in the methodology between 
Petricoin et  al.[27] and the current study that 
contributed to a difference in proteomic pattern. One 
difference was the usage of serum samples in their 
method rather than plasma. Moreover, they tested PCa 
against BPH and not against healthy participants. In 
addition, the work was performed using SELDI‑TOF, 
which is often criticized for its reproducibility due to 
differences in the mass spectra obtained when using 
different batches of chip surfaces [28].

In another research study, Oh et  al.[29] used serum 
samples from 179 PCa patients and 74 benign 
patients in their study. The samples were processed 
using ProXPRESSION Biomarker Enrichment Kits. 
Samples were subsequently analyzed by a MALDI/
TOF mass spectrometer. For the selection of significant 
peaks out of the resulting peaks, a feature‑selection 
algorithm called Extended Markov Blanket was used. 
In total, 26 peaks were achieved, including peaks 
with m/z 1274.3, 2244.3, 2425.3, 3432.3, 3947.1, and 
4379.1, with an accuracy of 80.7%, a sensitivity of 
83.5%, a specificity of 74.4%, a positive predictive value 
of 87.9%, and a negative predictive value of 68.2%. The 

samples were serum rather than plasma, which has 
been proven to be superior to serum in proteomics 
studies. The preparation technique used in this research 
study was more tedious than that of the current study, 
contributing to lesser peptide separation. Moreover, 
the 26 peaks detected did not coincide with the seven 
peaks from the study completed by Petricoin et al. [27].

Al‑Ruwaili et  al.[30] collected 99 serum samples 
from PCa patients in order to compare between 
aggressive and indolent types, and samples were tested 
using SELDI‑TOF‑mass spectrometry. The results 
identified 26 different peaks with a significant P value 
of less than 0.05. However, four peaks were then 
identified as candidate biomarkers with m/z of 9300 
Da, which was upregulated in aggressive PCa patients 
and was identified as apolipoprotein C–I. Another 
three candidate biomarkers (22.2, 44.5, and 79.1 kDa) 
were found downregulated in the aggressive group, 
upregulated in the indolent group, and identified as 
apolipoprotein D, putative uncharacterized protein, 
and transferrin, respectively. Nevertheless, the 
discovered proteomic pattern differs from our research, 
as the comparison between different cancer stages 
was not undertaken in our study. The research merely 
conducted a comparison to detect new markers specific 
for the presence of cancer versus its lack thereof.

Although both the Al‑Ruwaili et al.[30] and Petricoin 
et al.[27] studies were performed using serum samples 
and SELDI‑TOF, their results did not coincide as they 

Box‑and‑whiskers	command	for	peak	11	for	the	two	classes.

Figure 4

2D	peak	statistics	using	the	first	two	peaks.	It	shows	the	use	of	the	
first	two	peaks	to	separate	the	patients	(red)	from	the	controls	(green).

Figure 5

Peak	24	expression	between	patients	and	controls.

Figure 3

Receiver‑operating	characteristic	curve	(ROC	curve)	for	peak	24	with	
area	under	the	curve	(AUC)=0.725.

Figure 6
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were comparing two different patients (aggressive PCa 
vs. indolent/PCa vs. BPH). Moreover, the resulting 
26 peaks from the Al‑Ruwaili et  al.[30] study differ 
from the 26 peaks in the study completed by Oh 
and colleagues, which shows that the difference in 
enrichment technique or mass spectrometer leads to 
different peak acquisition.

In the study by Ummanni et al. [31], tissue samples were 
tested from 24 cancer patients and their corresponding 
benign samples in 21  cases. Obtained tissues were 
processed using highly sensitive two‑dimensional 
differential gel electrophoresis coupled with mass 
spectrometry. In total, 118 electrophoretic protein 
spots were revealed in cancer patients, which were later 
identified by mass spectrometer showing 79 proteins. In 
a similar investigation performed by Kuruma et al. [32], 
analysis of PCa proteomes using two‑dimensional gel 
electrophoresis employing agarose gels for the initial 
isoelectric focusing step  (agarose 2‑DE) took place, 
with mass spectrometry used for protein identification. 
The discovered peaks had a higher mass range of more 
than 20 kDa. This was found to be exceeding the range 
tested in our research, as after 20 kDa, there were 
merely no peaks detected.

Some research studies used urine samples, as urine 
is considered to be an ultrafiltrate of plasma and its 
protein content was less viable to be disintegrated in 
comparison with other biological fluids  [33]. In the 
study completed by Davalieva et al. [34], focus was on 
the identification of noninvasive biomarkers in urine 
with higher specificity than PSA. Urine samples from 
PCa and BPH patients were tested by two‑dimensional 
differential gel electrophoresis coupled with mass 
spectrometry and bioinformatics analysis. In total, 23 
proteins with differential abundance in urine of PCa 
patients compared with BPH patients were statistically 
significant  (P  <  0.05), out of which fibrinogen‑A 
chain and inter‑alpha‑trypsin inhibitor heavy‑chain 4 
fragment  (ITIH4) was upregulated, which coincided 
with peaks 12 (2660.7) and 11 (2485) in our study.

Theodorescu et  al.[35] studied urine in 51 PCa and 
35 patients with negative biopsy to identify a panel of 
polypeptides that could detect PCa. A panel consisting 
of 12 polypeptides was identified. One of them 
correlated with peak 6  (1553.97) in our study. The 
panel of biomarkers was validated in a blinded set of 
213 samples (118 PCa and 95 negative biopsies). PCa 
was detected with 89% sensitivity and 51% specificity. 
This approach was tested for its effectiveness in routine 
clinical application in a subsequent study [36].

On comparing the achieved peak results with the database 
shown in the article done by Albrethsen [37], some peaks 

could be identified. Peak 3  (1061 Da) was identified 
as kininogen fragment, which was downregulated in 
patients in comparison with normal controls. The same 
peak was also mentioned in another article by Karpova 
et  al.  [38], but it was identified in bladder cancer 
patients. However, some explanations propose that there 
might be an overlap between the two cancers because 
of the common embryonic origin of both bladder and 
prostate. Additionally, peak 14  (2817 Da)  –  which 
was also downregulated – coincided with the mass of 
fibrinogen A1 fragment  (2816 Da), while peak 11 of 
exact mass  (2485) and mass range  (2478–2496) was 
approximate to two peaks –ITIH4 of mass (2471 Da), 
and apolipoprotein A4 (2508 Da). The Apo‑A4 chain was 
shown to be downregulated in the study by Fan et al.[39] 
Moreover, peak 19 with mass range (3228–3249) was 
identified as fibrinogen‑A fragment, and was found 
to be upregulated in gray‑zone patients versus other 
healthy controls.

Peak 24 with mass range 3288–3306 detected by the 
GA model was found to be approximate to ITIH4 
fragment of mass (3272 Da), which was identified as 
a potential biomarker for the differentiation between 
PCa and BPH by Jayapalan et al. [40]. In addition, in 
our study, peak 23 with mass 3279.43 and mass range 
3269.79–3288.51 was found to be significant in the 
univariate analysis with a PWKW of less than 0.016 
and coincides with the mass of ITIH4 fragment. 
Peak 12 in the univariate analysis of mass 2660 Da 
was upregulated, it was found to be a significant peak 
according to its PWKW 0.00104 and was identified as 
fibrinogen‑A fragment [41], a similar finding to what 
has been shown in the research by Davalieva et al. [34]. 
However, the marker was identified in urine.

In addition, other studies such as Schwamborn 
et al.[42] and Steurer et al.[43] performed their research 
using prostatic tissue rather than plasma samples. 
Nevertheless, Schwamborn et  al.[42] processed their 
samples on the MALDI‑imaging device and later used 
the ClinProTool program to perform their statistical 
analysis in concordance with the actual study. However, 
a ‘support vector machine’ algorithm was used to 
classify the cancerous from the noncancerous regions, 
achieving an overall cross‑validation, sensitivity, and 
specificity of 88, 85.21, and 90.74% respectively. Four 
differing overexpressed peaks were discovered: 2753 
and 6704 Da for noncancerous glands, and 4964 and 
5002 Da for cancerous glands. The later peak was 
also found in the present study as peak 38 with mass 
5002.59 Da; however, its PWKW of 0.095 made it 
illegible to be considered a significant peak.

As stated in the study performed by Malik et al. [44], 
the peak with m/z 8943 Da that was identified as 
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an isoform of apolipoprotein‑AII was found to be 
upregulated in PCa patients compared with normal 
ones. This protein was found in several proteomic PCa 
studies. However, in our research, this increase was 
not detected, which should be searched for in future 
studies.

The field of proteomics has developed drastically 
during recent years. MALDI enables to identify and 
characterize the structure of proteins and peptides. 
Nonetheless, the main advantages of MALDI–TOF 
proteomic profiling are its high sensitivity, high 
thoroughput, ease of use, automation, and relatively 
low cost. It is beyond doubt that the development 
of further proteomic tools would aid in subsequent 
breakthroughs in cancer research.

The study might have been under the limitation of not 
being able to ascertain whether the discovered results 
were not because of the cancer pathology itself rather 
than PCa. The discovered peaks might have been 
attributed to prostatic pathologies rather than cancer 
such as BPH prostatitis.

Conclusion
Proteomic profiling can be an effective method for the 
discovery of new blood‑based tumor markers for PCa 
patients. MALDI–TOF proteomic profiling represents 
a new frontier for screening and early diagnosis of PCa 
in Egypt. The analytical performance of multiplexed 
tumor profiles exceeds that of the single traditional 
tumor markers. However, the results that were found 
would need further validation on a larger scale and to be 
compared with other cancers to confirm its specificity 
for PCa rather than other inflammatory processes in 
the prostate or other cancers.
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